首页> 外文OA文献 >Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation : theory, numerical simulations, and laboratory experiments
【2h】

Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation : theory, numerical simulations, and laboratory experiments

机译:大陆,超大陆,地幔热混合和地幔热隔离:理论,数值模拟和实验室实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Super-continental insulation refers to an increase in mantle temperature below a supercontinent due to the heat transfer inefficiency of thick, stagnant continental lithosphere relative to thinner, subducting oceanic lithosphere. We use thermal network theory, numerical simulations, and laboratory experiments to provide tighter physical insight into this process. We isolate two end-member dynamic regimes. In the thermally well mixed regime the insulating effect of continental lithosphere can not cause a localized increase in mantle temperature due to the efficiency of lateral mixing in the mantle. In this regime the potential temperature of the entire mantle is higher than it would be without continents, the magnitude depending on the relative thickness of continental and oceanic lithosphere (i.e., the insulating effects of continental lithosphere are communicated to the entire mantle). Thermal mixing can be short circuited if subduction zones surround a supercontinent or if the convective flow pattern of the mantle becomes spatially fixed relat ive to a stationary supercontinent. This causes a transition to the thermal isolation regime: The potential temperature increases below a supercontinent whereas the potential temperature below oceanic domains drops such that the average temperature of the whole mantle remains constant. Transition into this regime would thus involve an increase in the suboceanic viscosity, due to local cooling, and consequently a decrease in the rate of oceanic lithosphere overturn. Transition out of this regime can involve the unleashing of flow driven by a large lateral temperature gradient, which will enhance global convective motions. Our analysis highlights that transitions between the two states, in either direction, will effect not only the mantle below a supercontinent but also the mantle below oceanic regions. This provides a larger set of predictions that can be compared to the geologic record to help determine if a hypothesized super-continental thermal effect did or did not occur on our planet.
机译:超大陆绝热是指由于厚而停滞的大陆岩石圈相对于较薄的俯冲海洋岩石圈的传热效率低而使地幔温度在超大陆以下升高。我们使用热网络理论,数值模拟和实验室实验来对该过程提供更严格的物理见解。我们隔离了两个最终成员动态机制。在热充分混合状态下,由于地幔中横向混合的效率,大陆岩石圈的绝热作用不会导致地幔温度的局部升高。在这种情况下,整个地幔的潜在温度要高于没有大陆的情况,其幅度取决于大陆和海洋岩石圈的相对厚度(即大陆岩石圈的绝热效应传递给整个地幔)。如果俯冲带围绕一个超大陆,或者地幔的对流流型相对于一个固定的超大陆在空间上是固定的,则热混合会被短路。这导致向热隔离状态过渡:潜在温度在超大陆以下升高,而海洋区域以下的潜在温度下降,使得整个地幔的平均温度保持恒定。因此,由于局部降温,过渡到该方案将涉及增加洋下粘度,从而降低海洋岩石圈翻转的速率。从这种状态过渡可能涉及释放由大的横向温度梯度驱动的流动,这将增强整体对流运动。我们的分析突出表明,两个状态之间在任一方向上的过渡不仅会影响超大陆以下的地幔,还会影响大洋地区以下的地幔。这提供了更大范围的预测,可以与地质记录进行比较,以帮助确定我们星球上是否发生了假设的超大陆热效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号